Atlas uses its whole body -- legs, arms, torso -- to perform a sequence of dynamic maneuvers that form a gymnastic routine. We created the maneuvers using new techniques that streamline the development process. First, an optimization algorithm transforms high-level descriptions of each maneuver into dynamically-feasible reference motions. Then Atlas tracks the motions using a model predictive controller that smoothly blends from one maneuver to the next. Using this approach, we developed the routine significantly faster than previous Atlas routines, with a performance success rate of about 80%.
Atlas利用其整個身體-腿,臂,軀幹-進行一系列動態動作,形成一個體操程序。 我們使用簡化開發過程的新技術創建了演習。 首先,優化算法將每個操作的高級描述轉換為動態可行的參考運動。 然後,阿特拉斯(Atlas)使用模型預測控制器跟踪運動,該控制器可以從一個動作平穩地融合到下一個動作。 使用這種方法,我們開發的例程比以前的Atlas例程快得多,性能成功率約為80%。